88 research outputs found

    First experimental evidence of one-dimensional plasma modes in superconducting thin wires

    Full text link
    We have studied niobium superconducting thin wires deposited onto a SrTiO3_{3} substrate. By measuring the reflection coefficient of the wires, resonances are observed in the superconducting state in the 130 MHz to 4 GHz range. They are interpreted as standing wave resonances of one-dimensional plasma modes propagating along the superconducting wire. The experimental dispersion law, ω\omega versus qq, presents a linear dependence over the entire wave vector range. The modes are softened as the temperature increases close the superconducting transition temperature. Very good agreement are observed between our data and the dispersion relation predicted by Kulik and Mooij and Sch\"on.Comment: Submitted to Physical review Letter

    Electron Counting Capacitance Standard with an improved five-junction R-pump

    Full text link
    The Electron Counting Capacitance Standard currently pursued at PTB aims to close the Quantum Metrological Triangle with a final precision of a few parts in 10^7. This paper reports the considerable progress recently achieved with a new generation of single-electron tunnelling devices. A five-junction R-pump was operated with a relative charge transfer error of five electrons in 10^7, and was used to successfully perform single-electron charging of a cryogenic capacitor. The preliminary result for the single-electron charge quantum has an uncertainty of less than two parts in 10^6 and is consistent with the value of the elementary charge.Comment: 16 pages, 9 figures, 1 tabl

    Quantum Metrology Triangle Experiments: A Status Review

    Full text link
    Quantum Metrology Triangle experiments combine three quantum electrical effects (the Josephson effect, the quantum Hall effect and the single-electron transport effect) used in metrology. These experiments allow important fundamental consistency tests on the validity of commonly assumed relations between fundamental constants of nature and the quantum electrical effects. This paper reviews the history, results and the present status and perspectives of Quantum Metrology Triangle experiments. It also reflects on the possible implications of results for the knowledge on fundamental constants and the quantum electrical effects.Comment: 36 pages, 8 figure

    Single-charge escape processes through a hybrid turnstile in a dissipative environment

    Get PDF
    We have investigated the static, charge-trapping properties of a hybrid superconductor---normal metal electron turnstile embedded into a high-ohmic environment. The device includes a local Cr resistor on one side of the turnstile, and a superconducting trapping island on the other side. The electron hold times, t ~ 2-20s, in our two-junction circuit are comparable with those of typical multi-junction, N >= 4, normal-metal single-electron tunneling devices. A semi-phenomenological model of the environmental activation of tunneling is applied for the analysis of the switching statistics. The experimental results are promising for electrical metrology.Comment: Submitted to New Journal of Physics 201

    Towards a quantum representation of the ampere using single electron pumps

    Full text link
    Electron pumps generate a macroscopic electric current by controlled manipulation of single electrons. Despite intensive research towards a quantum current standard over the last 25 years, making a fast and accurate quantised electron pump has proved extremely difficult. Here we demonstrate that the accuracy of a semiconductor quantum dot pump can be dramatically improved by using specially designed gate drive waveforms. Our pump can generate a current of up to 150 pA, corresponding to almost a billion electrons per second, with an experimentally demonstrated current accuracy better than 1.2 parts per million (ppm) and strong evidence, based on fitting data to a model, that the true accuracy is approaching 0.01 ppm. This type of pump is a promising candidate for further development as a realisation of the SI base unit ampere, following a re-definition of the ampere in terms of a fixed value of the elementary charge.Comment: 8 pages, 7 figure
    corecore